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Abstract—We present a low-cost (under US$2 500) autonomous
surface vessel (ASV) capable of efficient 3D reconstruction of
aquatic environmental fields. The design and autonomy stack
for the vehicle is described. To reconstruct continuous scalar
fields from spatially distributed sensor data, Gaussian process
(GP) regression is employed, assessing kernel functions such as
squared-exponential and Matérn, together with a non-stationary
Matérn variant whose spatially varying length-scale cap-
tures local covariance and anisotropic structure. By optimiz-
ing kernel hyperparameters via log-marginal-likelihood max-
imization, the resulting predictive models produce interac-
tive 2D and 3D water-quality visualizations through Folium.
This scalar-field-reconstruction (SFR) workflow naturally in-
tegrates with the DeepGIS decision-support system, and the
non-stationary formulation sharpens local estimates while con-
centrating uncertainty in poorly sampled regions, thereby guiding
adaptive replanning and to the best of our knowledge, this is
among the earliest field validations of a non-stationary Matérn
kernel for lake water-quality mapping. For this initial effort in
characterizing the dynamics of Tempe Town Lake in Arizona,
we present reconstruction of the upper water column as a 2D
field. Prediction mean and uncertainty maps are evaluated, and
we close this paper with a discussion of our future directions for
multi-robot mapping.

I. INTRODUCTION

Autonomous environmental monitoring platforms can play
a vital role in understanding and managing aquatic ecosys-
tems (1). Current aquatic monitoring methods are still
labor-intensive, spatially limited, and offer low spatio-temporal
resolution. In contrast, in recent years robotic platforms
equipped with integrated sensor suites have demonstrated
collection of high-resolution spatiotemporal data across large
water bodies, enabling more accurate assessments of environ-
ment as well as infrastructure health (2).

The R/V Karin Valentine (Figure [I) is a low size, weight,
and power (SWaP) autonomous surface vessel (ASV) de-
veloped for this purpose, incorporating a robust suite of
hardware optimized for autonomous in-situ data collection
and optimal sample return for ex-situ analysis. Its avionics
package includes a Pixhawk flight controller running v1.15
(and v1.16 beta) PX4 autopilot stack for low-level control,
and an ODROID companion computer that runs ROS2 for

high-level decision making and data handling. This system ar-
chitecture supports real-time sensor integration and autonomy,
while its payload—comprising a 1-D sonar for depth map-
ping and a multi-probe water-quality sonde—enables real-time
bathymetric and biogeochemical analysis (Table [[).

To transform raw spatial data into interpretable environ-
mental insights, this work employs Gaussian Process (GP)
regression ((3)) for reconstructing continuous scalar fields (4)
such as temperature distributions. GP models offer a proba-
bilistic, non-parametric approach that naturally captures spa-
tial dependencies and provides quantification of uncertainty.
By evaluating multiple kernel functions and optimizing their
hyperparameters, this approach supports reliable field recon-
struction for decision-support applications in aquatic research
and resource management.

Novelty and Contributions.: This study stands at the
forefront of aquatic remote sensing by uniting a sub-US$2 500,
low-SWaP ASV with a leading yet highly under-explored
non-stationary Matérn kernel. To the best of our knowledge,
this is the one of the earliest field-validated application of
that kernel to in-situ lake water-quality mapping, offering
a very fresh outlook on hotspot detection and adaptive un-
certainty quantification. Our approach sharpens scalar-field
reconstructions, localises predictive uncertainty for informa-
tive re-sampling, and streams posterior statistics into an open
DeepGIS/Folium visual-analytics stack, yielding an interactive
2-D/3-D workflow that closes the loop between data collection
and mission planning. .

II. RELATED WORK

Previous efforts at robotic aquatic sampling have explored
both mobile swarms and single-vessel approaches. A cyber-
physical system has been used to reconstruct spatiotemporal
aquatic fields using a swarm of low-cost robotic fish (). Their
method emphasizes adaptive sampling through a rendezvous-
based mobility scheme, where the sensors periodically regroup
to maintain wireless connectivity and plan their next move-
ment. In contrast, our approach employs a single autonomous
surface vehicle following a systematic lawnmower path to
collect data, with scalar field reconstruction performed offline



using kernel-based methods. This strategy simplifies platform
coordination and avoids the complexity of distributed swarm
control, while still enabling high-resolution coverage of the
field.

The deployment of autonomous surface vessels for water
sampling is not a novel notion. In recent years, groups such
as have taken advantage of advancements in flight controllers
to perform lithological and bathymetric measurements on
aquatic environments (6 [7). On the autonomy front, tasks
such as station-keeping and obstacle avoidance have been
demonstrated in aquatic environments (8; 9). The main con-
tribution of our works are a) low SWaP and low cost rapidly-
prototyped ASV design optimized for multi-robot operations,
and b) demonstrating a science laboratory catering to needs
of local ecosystems (Arizona in our case). On this ASV, we
demonstrate optimal estimation of the environmental fields
measured, providing a baseline for the waterbody. To do so, we
build up on prior research where such tasks have been executed
in a principled manner using Gaussian process regression (10).

In order to reconstruct these continuous fields with adaptive
uncertainty quantification, Paciorek and Schervish introduced
a non-stationary extension of the Matérn covariance by letting
the local anisotropic length-scale be a positive-definite ma-
trix 3(x) that varies with location, thereby sharpening both
mean predictions and uncertainty contours in heterogeneous
domains (). However, naive inference with this kernel requires
O(n?) Cholesky factorizations and O(n?) storage, making
it infeasible for more than a few thousand points without
specialized approximations (). Moreover, treating 3(x) itself
as a Gaussian process leads to challenges in identifiability and
slow convergence of MCMC when fitting the model, limiting
practical use to n < 103 (I1). An alternative was proposed
by Sampson and Guttorp (1992), who warp the original geo-
graphic coordinates into a latent “dispersion” space to recover
stationarity. Although elegant, their multidimensional-scaling
plus spline-interpolation pipeline involves ad-hoc tuning of
stress functions, can yield non-unique mappings, and delivers
only modest prediction improvements in practice (12)).

III. SYSTEM DESCRIPTION

The R/V Karin Valentine (Figures [T] and [2) was designed
to incorporate real-time data collection using PX4 firmware,
an open-source flight stack built on the real-time embedded
operating system (RTOS), NuttX. This system can integrate
the peripheral inputs of a particular airframe configuration
(UART/Serial, PWM-driven motors, cameras, etc.) with its
internal odometry to execute a mission plan. In essence, this
infrastructure supports high-level control and autonomy.

This idea of crafting autonomous flight plans is only pos-
sible by leveraging several packages and software libraries.
In particular, the MAVROS package enables communication
between our onboard computer and the flight controller. With
MAVLink serving as its baseline protocol, the system is ca-
pable of directing commands, transmitting messages between
the flight controller, its supporting GUI (which in our case is
QGroundControl), peripheral devices, telemetry apparati, and

Fig. 1: R/V Karin Valentine docked at the Tempe Town Lake
in Arizona, USA

companion computers. Along with that, via the MAVLink pro-
tocol, QGroundControl serves as an essential hub to coordinate
the waypoints for our boustrophedon surveys.

TABLE I: Sonde Parameters

Parameter Units
Temperature °C

pH -
Depth m
Conductivity pS/em
Dissolved Oxygen Saturation %
Dissolved Oxygen Concentration — mg/L
Chlorophyll pg/L
CDOM ppb
Turbidity NTU

To complete this system, a motorized winch is fixed to the
vessel to facilitate vertical profiling along the water column.
When the boat has reached a point of entry, the boat will drift
and begin to descend the sonde, which will be attached to
the winch, by an incremental delta (1-meter) for 3-5 seconds.
After that interim has expired, the winch will continue the
descent of the sonde until the device is within one meter of
the sonar’s ascertained bathymetric value. Once the system
has reached this distance, the winch will reel the housing
unit up to the water surface, and then proceed to the next
waypoints.(Figure [3)

For the operation of this research, this venture initially
functioned off of a Holybro Pixhawk 4 (FMUvVS5), but now
operates off of the Hex Cube Black Pixhawk Flight Con-
troller (reliant on the FMUv3 hardware). The boat measures
130cm x 88.6cm x 42.3cm, with a total mass of 21.3kg. It
is powered by two 12V, 20 Ah LiFePO, batteries connected
in parallel, and operates at cruise speeds ranging from 0.7 to
2m/s. The waypoint navigation system uses a 0.5 m threshold
radius for target proximity.



Fig. 2: CAD model of R/V Karin Valentine dimensionalized
in centimeters

Fig. 3: GPS, bathymetry, and water quality data are collected
as the R/V travels to subsequent waypoints.

A. Data Collection

The surveys were modelled to roughly resemble a bous-
trephedon pattern with five-meter turns in a 100-meter x 100-
meter section of the lake. Given that the sonde, sonar, and
GPS data were asynchronously collected, the first step in
collating the dataset involved aligning the GPS and sonar data
to the timing of the sonde data. Since the sonde data (which
was collected at a rate of 1Hz) had the minimum number
of data points, the other two parameters were truncated by
matching the GPS and sonar points that were collected closest
to the time at which an individual sonde measurement was
taken. Subsequently, a 3x3 plot and a CSV file are constructed
using sonde readings and their assigned geospatial coordinates
(Figure [). Additionally, the process is replicated to align the
sonar readings with its prescribed GPS coordinates (Figure [3).

IV. SCALAR FIELD RECONSTRUCTION

A. Gaussian Process Overview

We model the continuous scalar field f : R?2 5 R (e.g.,
water temperature) via Gaussian Process regression (3 [13).
Given n noisy observations

Yi = f(xl) + €, €; NN(O,O%),

2

-85 -850 ~925 ~9.00 ~8.75 -850 -85

icvene iV Orygen Saturation 2t .. Rialyed Oxygan Cancentraton imghl

16 04

~950 ~3.25 ~9.00 ~8.75 ~8.50 -825 -85 -850 ~925 ~9.00 ~8.75 -850 -8.25

e CrlOTop 1)

14 r) * 14

5 =

ar

-850 -925 ~900 -8.75 -850 -825 -850 -925 ~9.00 -875 -850 -8.35

Fig. 4: Various Sonde readings plotted against GPS
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Fig. 5: Bathymetric depth plotted against GPS

at inputs X = {x;}"; C R?, we place a GP prior
f(x) ~GP(0, k(x,x")),
so that the joint distribution over y and predictions at test
locations X, is
K(X,X)+02I K(X, X.)

[y} ~ Mo, :

I« K(X,,X) K(X.,X.)
B. Stationary Kernels

Under stationarity, kernels depend only on the Euclidean
distance r = ||x — x’||. We consider:
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C. Motivation for Non-Stationary Kernels

Standard Gaussian process models with stationary covari-
ance kernels assume that correlation is uniform in all direc-
tions and constant over the domain. In practice, this causes
them to over-smooth sharp, anisotropic transitions or under-
smooth fine local structure, obscuring localized variability
near hotspots and producing nearly uniform uncertainty belts
around sampling tracks.

Cao and Low address this by proposing entropy- and
mutual-information—based path planning algorithms that con-
dition only on a fixed window of nearby observations,
thereby exploiting directional correlation in anisotropic fields
to achieve near-optimal uncertainty reduction while keeping
computation time linear in the planning horizon length (14).

Likewise, the Multi-robot Adaptive Sampling Problem
(MASP) framework formulates exploration as a dynamic pro-
gram over Gaussian and log-Gaussian processes, and proves
that increasing adaptivity—i.e., responding to newly observed,
localized hotspots—monotonically reduces mapping uncer-
tainty. This demonstrates the practical benefit of allowing
spatially varying correlation lengths that can shrink in high-
variance regions (13).
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and uncertainty (bottom row) maps for stationary kernels.

D. Non-Stationary Kernel Formulation

To capture spatially varying length scales and anisotropy,
we employ the non-stationary Matérn kernel (11)):

s [SEPSE)
T mx) + x| 27T )

kns(x,x') =0

K, (2),

with 3(x) encoding local length scales and 22 (x —
x)T[(2(x) + 2(x'))/2] 71 (x — x'). The prefactor normalizes
and adapts covariance amplitude to local variability, sharpen-
ing uncertainty contours around temperature patches.

E. Log Marginal Likelihood & Cholesky

Hyperparameters ¢ = {of,{y,c, p,0,} are learned by
maximizing the log marginal likelihood (I6) of y under
covariance K = K (X, X;0) + 021. We compute K = LL"
via Cholesky so that inverses and determinants are efficiently
and stably obtained.

F. Posterior Prediction

Given test inputs X, the predictive mean and covariance
follow standard GP expressions, and prediction entropy guides
adaptive sampling.

V. RESULTS AND DISCUSSION

Figure [6] compares the stationary-kernel GP reconstructions
on Dec. 6 data. In the top row, the mean prediction maps
recover the broad temperature gradient but completely smooth
over smaller hotspots. The corresponding uncertainty maps in
the bottom row remain nearly uniform around the survey track,
masking areas where the field is poorly constrained.
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Fig. 7: Non-stationary GP results on Dec. 6 data: mean and uncertainty.

By contrast, Figure [/| shows results from the non-stationary
GP. Its mean field not only reproduces the large-scale struc-
ture but also preserves sharper local peaks, while the un-
certainty map adapts to spatial heterogeneity—contracting in
well-sampled regions and highlighting variance near temper-
ature patches.

We further validate these improvements on an analytic test
field (Fig. [8). Here the non-stationary kernel resolves both
the central Gaussian bump and anisotropic sinusoidal patterns
more faithfully than any stationary kernel, and it concentrates
uncertainty where gradients are steep.

In summary, stationary kernels smooth out fine-scale
anomalies in their mean predictions and enforce a uniform
uncertainty structure that can hide local variability. The non-
stationary GP, by contrast, dynamically modulates both mean
and variance, making it far better suited to mapping heteroge-
neous aquatic environments.

VI. CONCLUSIONS

We demonstrated that a low-cost autonomous surface vessel,
R/V Karin Valentine, when coupled with Gaussian Process
regression, can produce high-fidelity reconstructions of aquatic
scalar fields. Our systematic comparison of stationary kernels
(Exponential, Squared Exponential, Matérn) against a non-
stationary Matérn kernel revealed that only the non-stationary
formulation adapts its uncertainty and correlation structure to
local anisotropy, sharpening mean estimates and concentrating
variance around true hotspots. By leveraging Cholesky-based
hyperparameter optimization and efficient posterior inference,
our pipeline delivers numerically stable, interactive 2D/3D
field maps suitable for decision-support. These results confirm
that non-stationary covariance models substantially enhance
environmental monitoring accuracy over traditional stationary
alternatives.

VII. FUTURE WORK

A secondary mission with an informative path can be
estimated after the first lawnmower survey, by maximizing
an utility function. Additionally, multi-robot mapping can be
carried out with a second autonomous vessel t(under construc-
tion) to both increase the coverage area of the experiment, and
reduce mapping time.

We aim to evaluate sampling efficiency by measuring infor-
mation gain (e.g., reduction in posterior variance) per unit dis-
tance or energy, across both smoothly varying and patchy (e.g.,
algal bloom) environments, in order to empirically validate
when adaptive, non-stationary—kernel sampling delivers the
greatest modeling improvements for a given resource budget.

Continuing with the escalation of the experimental design,
as the winched system embarks on its limnological analysis
along the water column, there exists hope to assess the
geospatial, bathymetric, and biogeochemical data as a function
of time (thus making a 4D model of the waters’ behavior). This
concept necessitates a GP too. Additionally, current research is
assessing the usefulness of hydrological flow models (such as
CE-QUAL-W?2) in predicting the characteristics of the water.
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